46 research outputs found

    Evaluating the Applicability of Advanced Techniques for Practical Real-time Train Scheduling

    Get PDF
    AbstractThis paper reports on the practical applicability of published techniques for real-time train scheduling. The final goal is the development of an advanced decision support system for supporting dispatchers’ work and for guiding them toward near-optimal real-time re-timing, re-ordering and re-routing decisions. The paper focuses on the optimization system AGLIBRARY that manages trains at the microscopic level of block sections and block signals and at a precision of seconds. The system outcome is a detailed conflict-free train schedule, being able to avoid deadlocks and to minimize train delays. Experiments on a British railway nearby London demonstrate that AGLIBRARY can quickly compute near-optimal solutions

    Optimal covariant quantum networks

    Get PDF
    A sequential network of quantum operations is efficiently described by its quantum comb, a non-negative operator with suitable normalization constraints. Here we analyze the case of networks enjoying symmetry with respect to the action of a given group of physical transformations, introducing the notion of covariant combs and testers, and proving the basic structure theorems for these objects. As an application, we discuss the optimal alignment of reference frames (without pre-established common references) with multiple rounds of quantum communication, showing that i) allowing an arbitrary amount of classical communication does not improve the alignment, and ii) a single round of quantum communication is sufficient.Comment: 10 pages, 3 figure

    No-signaling, entanglement-breaking, and localizability in bipartite channels

    Full text link
    A bipartite quantum channel represents the interaction between systems, generally allowing for exchange of information. A special class of bipartite channels are the no-signaling ones, which do not allow communication. In Ref. [1] it has been conjectured that all no-signaling channels are mixtures of entanglement-breaking and localizable channels, which require only local operations and entanglement. Here we provide the general realization scheme, giving a counterexample to the conjecture.Comment: 4 pages, revtex

    Efficient universal programmable quantum measurements

    Full text link
    A universal programmable detector is a device that can be tuned to perform any desired measurement on a given quantum system, by changing the state of an ancilla. With a finite dimension d for the ancilla only approximate universal programmability is possible, with "size" d=f(1/e) increasing function of the "accuracy" 1/e. In this letter we show that, much better than the exponential size known in the literature, one can achieve polynomial size. An explicit example with linear size is also presented. Finally, we show that for covariant measurements exact programmability is feasible.Comment: 4 pages, RevTex

    Superbroadcasting of mixed states

    Full text link
    We derive the optimal universal broadcasting for mixed states of qubits. We show that the nobroadcasting theorem cannot be generalized to more than a single input copy. Moreover, for four or more input copies it is even possible to purify the input states while broadcasting. We name such purifying broadcasting superbroadcasting.Comment: 4 pages, 4 figures, to appear on Phys. Rev. Let

    Quantum error correction with degenerate codes for correlated noise

    Full text link
    We introduce a quantum packing bound on the minimal resources required by nondegenerate error correction codes for any kind of noise. We prove that degenerate codes can outperform nondegenerate ones in the presence of correlated noise, by exhibiting examples where the quantum packing bound is violated.Comment: 5 pages, published versio

    Discord and non-classicality in probabilistic theories

    Full text link
    Quantum discord quantifies non-classical correlations in quantum states. We introduce discord for states in causal probabilistic theories, inspired by the original definition proposed in Ref. [17]. We show that the only probabilistic theory in which all states have null discord is classical probability theory. Non-null discord is then not just a quantum feature, but a generic signature of non-classicality.Comment: 5 pages, revtex styl

    Superbroadcasting and classical information

    Get PDF
    We address the problem of broadcasting N copies of a generic qubit state to M>N copies by estimating its direction and preparing a suitable output state according to the outcome of the estimate. This semiclassical broadcasting protocol is more restrictive than a general one, since it requires an intermediate step where classical information is extracted and processed. However, we prove that a suboptimal superbroadcasting, namely broadcasting with simultaneous purification of the local output states with respect to the input ones, is possible. We show that in the asymptotic limit of M→∞M \to \infty the purification rate converges to the optimal one, proving the conjecture that optimal broadcasting and state estimation are asymptotically equivalent. We also show that it is possible to achieve superbroadcasting with simultaneous inversion of the Bloch vector direction (universal NOT). We prove that in this case the semiclassical procedure of state estimation and preparation turns out to be optimal. We finally analyse semiclassical superbroadcasting in the phase-covariant case.Comment: 9 pages, 2 figure

    Optimal estimation of quantum observables

    Full text link
    We consider the problem of estimating the ensemble average of an observable on an ensemble of equally prepared identical quantum systems. We show that, among all kinds of measurements performed jointly on the copies, the optimal unbiased estimation is achieved by the usual procedure that consists in performing independent measurements of the observable on each system and averaging the measurement outcomes.Comment: Submitted to J. Math Phy

    Optimal phase estimation for qubit mixed states

    Full text link
    We address the problem of optimal estimation of the relative phase for two-dimensional quantum systems in mixed states. In particular, we derive the optimal measurement procedures for an arbitrary number of qubits prepared in the same mixed state.Comment: revised version accepted for publicatio
    corecore